Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : FEMS microbiology ecology

Analysing diversity among beta-lactamase encoding genes in aquatic environments

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FEMS microbiology ecology - 01 Jun 2006

Henriques I, Moura A, Alves A, Saavedra MJ, Correia A

Link to Pubmed [PMID] – 16689874

FEMS Microbiol. Ecol. 2006 Jun;56(3):418-29

The most common mechanism of resistance to beta-lactam antibiotics is the production of beta-lactamases. These enzymes are encoded by genes that evolve rapidly, thus constituting a group characterized by high levels of molecular diversity. Most of the genetic determinants of resistance to beta-lactam antibiotics characterized until now were obtained from clinical isolates. This study was designed in order to exploit the presence of beta-lactamase gene sequences in an aquatic environment, and to get information on the distinctive features of those sequences when compared to others available on databases. DNA sequences potentially encoding proteins of three different families of clinically relevant beta-lactamases were assessed: TEM, IMP and OXA-2 derivatives. The presence of bla sequences in DNA extracted from water samples from the lagoon Ria de Aveiro was checked by PCR and hybridization. Sequences representing the three families of beta-lactamases studied were detected. The molecular diversity of the amplicons was assessed by cloning and sequence analysis, and denaturing gradient gel electrophoresis (PCR-DGGE) separation. Most of the retrieved sequences (particularly sequences representing bla(TEM)and bla(OXA-2)) were identical or very similar to beta-lactamase gene sequences previously characterized from clinical isolates. Phylogenetic analysis suggests that this aquatic ecosystem is a reservoir of molecular diverse putative bla sequences. The patterns of molecular diversity found within the beta-lactamase gene families studied do not correspond to those reported in studies focussing on clinical isolates.

http://www.ncbi.nlm.nih.gov/pubmed/16689874