Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : European journal of biochemistry / FEBS

An insect-specific toxin from Centruroides noxius Hoffmann. cDNA, primary structure, three-dimensional model and electrostatic surface potentials in comparison with other toxin variants

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in European journal of biochemistry / FEBS - 01 Dec 1996

Selisko B, Garcia C, Becerril B, Delepierre M, Possani LD

Link to Pubmed [PMID] – 8973638

Eur. J. Biochem. 1996 Dec;242(2):235-42

Scorpion toxins acting on sodium channels differ in their specificity. Toxic peptides specific towards mammals and arthropods (insects and/or crustaceans) have been described. Because of the similar three-dimensional fold of these peptides, the molecular base of their specificity is thought to reside in certain differences at the level of amino acid residues especially within or near the binding site of the toxin to the particular ion channel. The cDNA, amino acid sequence and biological activity of an insect-specific toxin, Cn10, from the scorpion Centruroides noxius Hoffmann is reported. The electrostatic potential surface around a three-dimensional model of Cn10 was calculated. It revealed that residues Tyr4, Lys13, Ile18, Leu19, Gly20, Lys43, Leu44, Thr57, Tyr58, Pro59, Thr64 and Cys65, situated at the side of the toxin proposed in the literature to bind to the sodium channel, constitute a positive surface region. Therefore, they may form the site that binds to the channel. Cn10 was included in a comparative analysis of two groups of natural variants, highly similar peptides of the genus Centruroides with specificities towards mammals or arthropods. A number of surface-accessible residues, consistently different between the two groups and situated near the putative binding site, may be of importance for the specificity of the analyzed toxins.

http://www.ncbi.nlm.nih.gov/pubmed/8973638