Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Parasites & vectors

An evaluation of efficacy of the auto-dissemination technique as a tool for Aedes aegypti control in Madeira, Portugal

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Parasites & vectors - 03 May 2019

Seixas G, Paul REL, Pires B, Alves G, de Jesus A, Silva AC, Devine GJ, Sousa CA

Link to Pubmed [PMID] – 31053095

Parasit Vectors 2019 May;12(1):202

BACKGROUND: The frequency and intensity of arboviral epidemics is steadily increasing and posing an intractable public health burden. Current vector control methods are proving ineffectual and despite progress in the development of high technology approaches, there is an urgent need for the development of tools for immediate implementation. Several studies suggest that the auto-dissemination of pyriproxyfen (PPF) is a promising new approach to larviciding although there is little detail on the conditions under which it is optimally effective. Here, we evaluate the efficacy of the approach in urban and rural sites in Madeira, Portugal.

RESULTS: Auto-dissemination of PPF through adapted Biogents Sentinel traps (BGSTs) resulted in a modest but consistent impact on both juvenile and adult mosquito populations, but with considerable spatial heterogeneity. This heterogeneity was related to the distance from the BGST dissemination station as well as the local density of adult mosquitoes. There was evidence that the impact of PPF was cumulative over time both locally and with gradual spatial expansion.

CONCLUSIONS: The density of adult mosquitoes and the spatial distribution of dissemination devices are key factors in mediating efficacy. In addition, urban topography may affect the efficiency of auto-dissemination by impeding adult mosquito dispersal. Further studies in a range of urban landscapes are necessary to guide optimal strategies for the implementation of this potentially efficacious and cost-effective approach to larviciding.

https://www.ncbi.nlm.nih.gov/pubmed/31053095