Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Bruno Dupuy, Claire Morvan, Institut Pasteur
Cellules végétative et spores de Clostridioides difficile / Vegative cells and spores of Clostridioides difficile
Publication : Electrophoresis

Advanced immunocapture of milk-borne Salmonella by microfluidic magnetically stabilized fluidized bed

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Electrophoresis - 04 Sep 2017

Srbova J, Krulisova P, Holubova L, Pereiro I, Bendali A, Hamiot A, Podzemna V, Macak J, Dupuy B, Descroix S, Viovy JL, Bilkova Z

Link to Pubmed [PMID] – 28868639

Electrophoresis 2017 Sep;

The success of microfluidic immunocapture based on magnetic beads depends primarily on a sophisticated microscale separation system and on the quality of the magnetic immunosorbent. A microfluidic chip containing a magnetically stabilized fluidized bed (μMSFB), developed for the capture and on-chip amplification of bacteria, was recently described by Pereiro et al.. The present work shows the thorough development of anti-Salmonella magnetic immunosorbents with the optimal capture efficiency and selectivity. Based on the corresponding ISO standards, these parameters have to be high enough to capture even a few cells of bacteria in a proper aliquot of sample, e.g. milk. The selection of specific anti-Salmonella IgG molecules and the conditions for covalent bonding were the key steps in preparing an immunosorbent of the desired quality. The protocol for immunocapturing was first thoroughly optimized and studied in a batchwise arrangement, and then the carrier was integrated into the μMSFB chip. The combination of the unique design of the chip (guaranteeing the collision of cells with magnetic beads) with the advanced immunosorbent led to a Salmonella cell capture efficiency of up to 99%. These high values were achieved repeatedly even in samples of milk differing in fat content. The rate of nonspecific capture of Escherichia coli (i.e. the negative control) was only 2%.

https://www.ncbi.nlm.nih.gov/pubmed/28868639