Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© K. Melican.
Human microvessel (red) colonized by N. meningitidis (green).
Publication : PLoS pathogens

Adhesion of Neisseria meningitidis to dermal vessels leads to local vascular damage and purpura in a humanized mouse model

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in PLoS pathogens - 24 Jan 2013

Melican K, Michea Veloso P, Martin T, Bruneval P, Duménil G

Link to Pubmed [PMID] – 23359320

PLoS Pathog. 2013 Jan;9(1):e1003139

Septic shock caused by Neisseria meningitidis is typically rapidly evolving and often fatal despite antibiotic therapy. Further understanding of the mechanisms underlying the disease is necessary to reduce fatality rates. Postmortem samples from the characteristic purpuric rashes of the infection show bacterial aggregates in close association with microvessel endothelium but the species specificity of N. meningitidis has previously hindered the development of an in vivo model to study the role of adhesion on disease progression. Here we introduced human dermal microvessels into SCID/Beige mice by xenografting human skin. Bacteria injected intravenously exclusively associated with the human vessel endothelium in the skin graft. Infection was accompanied by a potent inflammatory response with the secretion of human inflammatory cytokines and recruitment of inflammatory cells. Importantly, infection also led to local vascular damage with hemostasis, thrombosis, vascular leakage and finally purpura in the grafted skin, replicating the clinical presentation for the first time in an animal model. The adhesive properties of the type IV pili of N. meningitidis were found to be the main mediator of association with the dermal microvessels in vivo. Bacterial mutants with altered type IV pili function also did not trigger inflammation or lead to vascular damage. This work demonstrates that local type IV pili mediated adhesion of N. meningitidis to the vascular wall, as opposed to circulating bacteria, determines vascular dysfunction in meningococcemia.

http://www.ncbi.nlm.nih.gov/pubmed/23359320