Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Yang SI, Institut Pasteur
Publication : Biochemistry

Activation of camptothecin derivatives by conjugation to triple helix-forming oligonucleotides

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biochemistry - 22 Mar 2005

Arimondo PB, Laco GS, Thomas CJ, Halby L, Pez D, Schmitt P, Boutorine A, Garestier T, Pommier Y, Hecht SM, Sun JS, Bailly C

Link to Pubmed [PMID] – 15766244

Biochemistry 2005 Mar;44(11):4171-80

Topoisomerase I (topo I) is a ubiquitous DNA-cleaving enzyme and an important therapeutic target in cancer chemotherapy. Camptothecins (CPTs) reversibly trap topo I in covalent complex with DNA but exhibit limited sequence preference. The utilization of conjugates such as triplex-forming oligonucleotides (TFOs) to target a medicinal agent (like CPT) to a specific genetic sequence and orientation within the DNA has been accomplished successfully. In this study, different attachment points of the TFO to CPT (including positions 7, 9, 10, and 12) were investigated and our findings confirmed and extended previous conclusions. Interestingly, the conjugates induced specific DNA cleavage by topo I at the triplex site even when poorly active or inactive CPT derivatives were used. This suggests that the positioning of the drug in the cleavage complex by the sequence-specific DNA ligand is able to stabilize the ternary complex, even when important interactions between topo I and CPT are disrupted. Finally, certain TFO-CPT conjugates were able to induce sequence-specific DNA cleavage with the topo I mutants R364H and N722S that are resistant to camptothecin. The TFO-CPT conjugates are thus valuable tools to study the interactions involved in the formation of the ternary complex and also to enlarge the family of compounds that poison topo I. The fact that an inactive CPT analogue can act as a topo I poison when appropriately coupled to a TFO provides a new perspective at the level of drug design.

https://www.ncbi.nlm.nih.gov/pubmed/15766244