Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Bioinformatics (Oxford, England)

Abstracting the dynamics of biological pathways using information theory: a case study of apoptosis pathway

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Bioinformatics (Oxford, England) - 01 Jul 2017

Palaniappan SK, Bertaux F, Pichené M, Fabre E, Batt G, Genest B

Link to Pubmed [PMID] – 28200026

Link to DOI – 10.1093/bioinformatics/btx095

Bioinformatics 2017 Jul; 33(13): 1980-1986

Quantitative models are increasingly used in systems biology. Usually, these quantitative models involve many molecular species and their associated reactions. When simulating a tissue with thousands of cells, using these large models becomes computationally and time limiting.In this paper, we propose to construct abstractions using information theory notions. Entropy is used to discretize the state space and mutual information is used to select a subset of all original variables and their mutual dependencies. We apply our method to an hybrid model of TRAIL-induced apoptosis in HeLa cell. Our abstraction, represented as a Dynamic Bayesian Network (DBN), reduces the number of variables from 92 to 10, and accelerates numerical simulation by an order of magnitude, yet preserving essential features of cell death time distributions.This approach is implemented in the tool DBNizer, freely available at http://perso.crans.org/genest/DBNizer .gregory.batt@inria.fr or bgenest@irisa.fr.Supplementary data are available at Bioinformatics online.