Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : FASEB journal : official publication of the Federation of American Societies for Experimental Biology

Abnormal DNA methylation and deoxycytosine-deoxyguanine content in nucleosomes from lymphocytes undergoing apoptosis

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in FASEB journal : official publication of the Federation of American Societies for Experimental Biology - 01 Aug 1999

Huck S, Deveaud E, Namane A, Zouali M

Link to Pubmed [PMID] – 10428765

FASEB J. 1999 Aug;13(11):1415-22

Systemic lupus erythematosus (SLE) is characterized by an accelerated apoptosis of peripheral lymphocytes and an impairment of the clearance of apoptotic cells. Since changes in DNA methylation and in deoxycytosine and deoxyguanine (GC) content have been shown to enhance the potential of DNA to activate murine and human B lymphocytes, we tested the capacity of lymphocytes undergoing apoptosis (under conditions that mimic the deletion of self-reactive cells after antigen receptor engagement) to generate nucleosomes with a particular base composition. Using two cell culture systems and four apoptosis triggers, we found an increase of deoxymethylcytosine in fragmented chromosomal DNA of apoptotic B and T lymphocytes. However, this increase was not associated with modulation of DNA (cytosine-5) methyltransferase, the enzyme that methylates eukaryotic DNA, which suggests that the changes in DNA methylation patterns are not linked to the process of de novo DNA methylation during cell death. In addition, we could not detect a unique methylation pattern in highly repetitive Alu sequences present in the human genome of SLE subjects, as compared with controls. However, the abnormal DNA methylation of apoptotic nucleosomes was associated with an unusual pattern of nuclease-resistant, GC-rich regions in these DNA fragments. We propose that the combination of an accelerated apoptosis with a defect in the clearance of apoptotic cells results in release of increased amounts of nucleosomes with abnormally methylated, GC-rich DNA and provides an autologous stimulation that could bypass tolerance to self in systemic autoimmune diseases. These findings support the concept that the structure and dynamics of nucleosomes are critical in determining their immunogenicity in SLE.

http://www.ncbi.nlm.nih.gov/pubmed/10428765