Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Scientific reports

A simple, reproducible and cost-effective procedure to analyse gut phageome: from phage isolation to bioinformatic approach

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Scientific reports - 05 Aug 2019

d'Humières C, Touchon M, Dion S, Cury J, Ghozlane A, Garcia-Garcera M, Bouchier C, Ma L, Denamur E, P C Rocha E

Link to Pubmed [PMID] – 31383878

Sci Rep 2019 Aug;9(1):11331

The microbiota of the human gut is a complex and rich community where bacteria and their viruses, the bacteriophages, are dominant. There are few studies on the phage community and no clear standard for isolating them, sequencing and analysing their genomes. Since this makes comparisons between studies difficult, we aimed at defining an easy, low-cost, and reproducible methodology. We analysed five different techniques to isolate phages from human adult faeces and developed an approach to analyse their genomes in order to quantify contamination and classify phage contigs in terms of taxonomy and lifestyle. We chose the polyethylene glycol concentration method to isolate phages because of its simplicity, low cost, reproducibility, and of the high number and diversity of phage sequences that we obtained. We also tested the reproducibility of this method with multiple displacement amplification (MDA) and showed that MDA severely decreases the phage genetic diversity of the samples and the reproducibility of the method. Lastly, we studied the influence of sequencing depth on the analysis of phage diversity and observed the beginning of a plateau for phage contigs at 20,000,000 reads. This work contributes to the development of methods for the isolation of phages in faeces and for their comparative analysis.