Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Nucleic acids research

A self-cleaving DNA enzyme modified with amines, guanidines and imidazoles operates independently of divalent metal cations (M2+)

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nucleic acids research - 19 Jan 2009

Hollenstein M, Hipolito CJ, Lam CH, Perrin DM

Link to Pubmed [PMID] – 19153138

Nucleic Acids Res. 2009 Apr;37(5):1638-49

The selection of modified DNAzymes represents an important endeavor in expanding the chemical and catalytic properties of catalytic nucleic acids. Few examples of such exist and to date, there is no example where three different modified bases have been simultaneously incorporated for catalytic activity. Herein, dCTP, dATP and dUTP bearing, respectively, a cationic amine, an imidazole and a cationic guanidine, were enzymatically polymerized on a DNA template for the selection of a highly functionalized DNAzyme, called DNAzyme 9-86, that catalyzed (M(2+))-independent self-cleavage under physiological conditions at a single ribo(cytosine)phosphodiester linkage with a rate constant of (0.134 +/- 0.026) min(-1). A pH rate profile analysis revealed pK(a)’s of 7.4 and 8.1, consistent with both general acid and base catalysis. The presence of guanidinium cations permits cleavage at significantly higher temperatures than previously observed for DNAzymes with only amines and imidazoles. Qualitatively, DNAzyme 9-86 presents an unprecedented ensemble of synthetic functionalities while quantitatively it expresses one of the highest reported values for any self-cleaving nucleic acid when investigated under M(2+)-free conditions at 37 degrees C.