Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Laurent Debarbieux
Bactériophages sur la bactérie Escherichia coli 0104:H4 souche 55989.
Publication : Proceedings of the National Academy of Sciences of the United States of America

A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings of the National Academy of Sciences of the United States of America - 15 Dec 2005

Huber D, Cha MI, Debarbieux L, Planson AG, Cruz N, López G, Tasayco ML, Chaffotte A, Beckwith J

Link to Pubmed [PMID] – 16357193

Proc. Natl. Acad. Sci. U.S.A. 2005 Dec;102(52):18872-7

Escherichia coli thioredoxin is normally a cytoplasmic protein involved in the reduction of disulfide bonds. However, thioredoxin can be translocated to the periplasm when it is attached to a cotranslational signal sequence. When exported to the periplasm, it can partially replace the activity of DsbA in promoting the formation of disulfide bonds. In contrast, when thioredoxin is fused to a posttranslational signal sequence, very little of it appears in the periplasm. We propose that this absence of posttranslational export is due to the rapid folding of thioredoxin in the cytoplasm. We sought mutants of thioredoxin that retarded its folding in the cytoplasm, which we accomplished by fusing thioredoxin to a posttranslational signal sequence and selecting for mutants in which thioredoxin was exported to the periplasm, where it could replace DsbA. The collection of mutants obtained represents a limited number of amino acid changes in the protein. In vitro studies on purified mutant proteins show that all but one are defective in the kinetics and thermodynamics of protein folding. We propose that the slower folding of the thioredoxin mutant proteins in the cytoplasm allows their export by a posttranslational pathway. We discuss some implications of this class of mutants for aspects of the folding pathway of thioredoxin and for its mechanism of export. In particular, the finding that a folding mutant that allows protein translocation alters an amino acid at the C terminus of the protein suggests that the degree to which thioredoxin folds during its translation must be severely restricted.

http://www.ncbi.nlm.nih.gov/pubmed/16357193