Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Methods in enzymology

A quantitative method for measuring phototoxicity of a live cell imaging microscope.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Methods in enzymology - 01 Jan 2012

Tinevez JY, Dragavon J, Baba-Aissa L, Roux P, Perret E, Canivet A, Galy V, Shorte S,

Link to Pubmed [PMID] – 22341230

Link to DOI – 10.1016/B978-0-12-391856-7.00039-1

Methods Enzymol 2012 ; 506(): 291-309

Fluorescence-based imaging regimes require exposure of living samples under study to high intensities of focused incident illumination. An often underestimated, overlooked, or simply ignored fact in the design of any experimental imaging protocol is that exposure of the specimen to these excitation light sources must itself always be considered a potential source of phototoxicity. This can be problematic, not just in terms of cell viability, but much more worrisome in its more subtle manifestation where phototoxicity causes anomalous behaviors that risk to be interpreted as significant, whereas they are mere artifacts. This is especially true in the case of microbial pathogenesis, where host-pathogen interactions can prove especially fragile to light exposure in a manner that can obscure the very processes we are trying to observe. For these reasons, it is important to be able to bring the parameter of phototoxicity into the equation that brings us to choose one fluorescent imaging modality, or setup, over another. Further, we need to be able to assess the risk that phototoxicity may occur during any specific imaging experiment. To achieve this, we describe here a methodological approach that allows meaningful measurement, and therefore relative comparison of phototoxicity, in most any variety of different imaging microscopes. In short, we propose a quantitative approach that uses microorganisms themselves to reveal the range over which any given fluorescent imaging microscope will yield valid results, providing a metrology of phototoxic damage, distinct from photobleaching, where a clear threshold for phototoxicity is identified. Our method is widely applicable and we show that it can be adapted to other paradigms, including mammalian cell models.