Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Department Manager
  • Full Professor
  • Graduate Student
  • Honorary Professor
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Proceedings. Biological sciences

A non-coding region near Follistatin controls head colour polymorphism in the Gouldian finch.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Proceedings. Biological sciences - 03 Oct 2018

Toomey MB, Marques CI, Andrade P, Araújo PM, Sabatino S, Gazda MA, Afonso S, Lopes RJ, Corbo JC, Carneiro M,

Link to Pubmed [PMID] – 30282656

Link to DOI – 2018178810.1098/rspb.2018.1788

Proc Biol Sci 2018 10; 285(1888):

Discrete colour morphs coexisting within a single population are common in nature. In a broad range of organisms, sympatric colour morphs often display major differences in other traits, including morphology, physiology or behaviour. Despite the repeated occurrence of this phenomenon, our understanding of the genetics that underlie multi-trait differences and the factors that promote the long-term maintenance of phenotypic variability within a freely interbreeding population are incomplete. Here, we investigated the genetic basis of red and black head colour in the Gouldian finch (Erythrura gouldiae), a classic polymorphic system in which naturally occurring colour morphs also display differences in aggressivity and reproductive success. We show that the candidate locus is a small (approx. 70 kb) non-coding region mapping to the Z chromosome near the Follistatin (FST) gene. Unlike recent findings in other systems where phenotypic morphs are explained by large inversions containing hundreds of genes (so-called supergenes), we did not identify any structural rearrangements between the two haplotypes using linked-read sequencing technology. Nucleotide divergence between the red and black alleles was high when compared to the remainder of the Z chromosome, consistent with their maintenance as balanced polymorphisms over several million years. Our results illustrate how pleiotropic phenotypes can arise from simple genetic variation, probably regulatory in nature.

https://pubmed.ncbi.nlm.nih.gov/30282656