Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
Starting Date
16
Nov 2015
Status
Ongoing
Members
1
Structures
2

About

Genetic and Epigenetic Regulation of Stem Cell Fate

The objective of this research programme is to identify mouse stem cell properties and understand how they regulate cell fate choice in different contexts by modulating their modes of cell divisions…

Stem cells play crucial roles in establishing and repairing tissues, yet our knowledge of their properties, how they assure organogenesis and effect regeneration in distinct physiological contexts remains limited. A major challenge in stem cell biology is investigating these cells in their natural state in vivo.

Skeletal myogenesis provides an excellent paradigm to investigate stem cell function due to its accessibility, and its striking ability to regenerate efficiently. Futhermore, the same individual can undergo multiple rounds of muscle injury thereby permitting the long term study of stem cell turnover and homeostasis after trauma without life threatening consequences or complex surgical procedures.

The objective of this research programme is to identify mouse and human stem cell properties and understand how they regulate cell fate choice in different contexts by modulating their modes of cell divisions. Specifically, non-random DNA segregation and asymmetric distribution of critical transcription factors are being investigated. Notably, we developed unique genetic tools that allow us to isolate prospectively those cells that execute asymmetric vs. symmetric cell divisions during regeneration.

This knowledge will be projected to tissuegenesis using complementary clonal lineage tracing and live imaging of cell divisions. These studies aim to identify the diverse modes of stem cell divisions during tissuegenesis, information that can significantly impact on regenerative medicine.

Fundings