Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Vishu Aimanianda, Institut Pasteur
Cryptococcus neoformans with chitin (blue) and capsule (green) labelings
Event

From systems biology to damage limitation in Aspergillosis – Elaine Bignell

Scientific Fields
Diseases
Organisms
Applications
Technique
Date
13
Jun 2019
Time
14:00:00
Institut Pasteur, Rue du Docteur Roux, Paris, France
Address
Building: Fernbach RDC Room: Salle Jean Paul Aubert
Location
2019-06-13 14:00:00 2019-06-13 15:00:00 Europe/Paris From systems biology to damage limitation in Aspergillosis – Elaine Bignell Elaine Bignell – University of Manchester Faculty of Biology, Medecine and Health- UK Research in my lab seeks a mechanistic understanding of fungal disease with a view to developing novel diagnostics and antifungal therapies. […] Institut Pasteur, Rue du Docteur Roux, Paris, France Jessica Quintin jessica.quintin@pasteur.fr

About

Elaine Bignell – University of Manchester Faculty of Biology, Medecine and Health- UK

Research in my lab seeks a mechanistic understanding of fungal disease with a view to developing novel diagnostics and antifungal therapies. Our approach to studying the host-pathogen interaction transcends multiple experimental scales to address disease outcomes at the molecular, cellular, tissue, organ and whole animal levels. We are currently combining this suite of tools with a systems level approach to define pathogenicity in the major mould pathogen of humans, Aspergillus fumigatus. We are also developing novel pH signalling inhibitors as novel antifungal drugs, and studying secreted fungal proteins as novel vaccine candidates and diagnostic tools. In this talk I will present the data from a new genome-scale study addressing the A. fumigatus regulatory network driving stress adaptation and epithelial damage, and examine how this knowledge might lead to novel therapeutic interventions.

The human lung is continually exposed to spores of the airborne mould Aspergillus fumigatus. Inhaled spores are small enough to bypass mucociliary clearance mechanisms and reach the alveoli of the lung where interaction between host and pathogen cells can lead to fungal clearance, or to development of inflammatory or invasive fungal diseases. A. fumigatus is an accidental pathogen whose encounters with the host, although frequent, are circumstantial in nature.  The capacity of this organism to cause human disease is unique amongst a cohort of several hundred related Aspergillus species and relative to closest sequenced relatives there are no large scale genetic events which signify recent evolution of pathogenicity. Clinical relevance of aspergillus species does not correlate with fungal growth rate, but is positively correlated with thermotolerance, and epithelial toxicity.

Fuelled by the results of extensive fungal transcriptome research we have developed, in recent years, a programme of research which seeks the mechanistic basis of lung damage during A. fumigatus infection. In order to find out why A. fumigatus is a pathogen and how infection is cytotoxic to human epithelia we have observed the interaction between host and pathogen in laboratory culture and in mouse disease, and measured epithelial decay, lytic death of host cells, host cell signalling and cytokine degradation in response to fungal challenge. This research has revealed multiple mechanisms involved in eliciting epithelial damage, occurring at different stages of the host-pathogen interaction and involving different fungal morphotypes.

Interestingly, the regulatory network driving stress adaptation in A. fumigatus is largely unlinked to that driving epithelial cytotoxicity. We propose that this reflects the saprotrophic origins of an environmental mould, which is sometimes a human pathogen.

Location

Building: Fernbach RDC
Room: Salle Jean Paul Aubert
Address: Institut Pasteur, Rue du Docteur Roux, Paris, France