Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Event

Binless: bayesian normalization of Hi-C data provides significant interaction and difference detection independently of resolution

Scientific Fields
Diseases
Organisms
Applications
Technique
Date
04
Oct 2018
Time
11:00:00
25 Rue du Dr Roux, Paris, France
Address
Building: Sergent, Institut Pasteur Room: RDC 06
Location
2018-10-04 11:00:00 2018-10-04 12:30:00 Europe/Paris Binless: bayesian normalization of Hi-C data provides significant interaction and difference detection independently of resolution 3C-like experiments, such as 4C or Hi-C, have been fundamental in understanding genome organization. Thanks to these technologies, it is now known, for example, that Topologically Associating Domains (TADs) and chromatin loops are implicated […] 25 Rue du Dr Roux, Paris, France Michael Nilges michael.nilges@pasteur.fr

About

3C-like experiments, such as 4C or Hi-C, have been fundamental in understanding genome organization. Thanks to these technologies, it is now known, for example, that Topologically Associating Domains (TADs) and chromatin loops are implicated in the dynamic interplay of gene activation and repression, and their disruption can have dramatic effects on embryonic development. To make their detection easier, scientists have endeavored into deeper sequencing to mechanically increase the chances to detect weaker signals such as chromatin loops. Part of this mindset can be attributed to the limitations of existing software: the analysis of Hi-C experiments is both statistically and computationally demanding. Here, we devise a new way to represent Hi-C data, which leads to a more detailed classification of paired-end reads and, ultimately, to a new normalization and interaction detection method. Binless is resolution-agnostic, and adapts to the quality and quantity of available data. We demonstrate its capacities to call interactions and differences and make the software freely available.

Location

Building: Sergent, Institut Pasteur
Room: RDC 06
Address: 25 Rue du Dr Roux, Paris, France