Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of Open Source Software - 08 May 2022

Legrand V, Kergrohen T, Joly N, Criscuolo A

Link to DOI – 10.21105/joss.03790

JOSS 2022 May;7(73):3790

Due to advances in high-throughput sequencing technologies, generating whole genome sequencing (WGS) data with high coverage depth (e.g. ≥ 500×) is now becoming common, especially when dealing with non-eukaryotic genomes. Such high coverage WGS data often fulfills the expectation that most nucleotide positions of the genome are sequenced a sufficient number of times without error. However, performing bioinformatic analyses (e.g. sequencing error correction, whole genome de novo assembly) on such highly redundant data requires substantial running times and memory footprint.

To reduce redundancy within a WGS dataset, randomly downsampling high-throughput sequencing reads (HTSR) is trivial. Nevertheless, this first-in-mind strategy is not efficient as it does not minimize variation in sequencing depth, thereby eroding the coverage depth of genome regions that are under-covered (if any). To cope with this problem, a simple greedy algorithm, named digital normalization, was designed to efficiently downsample HTSRs over genome regions that are over-covered. Given an upper-bound threshold κ > 1, it returns a subset Sκ such that the coverage depth induced by the HTSRs in Sκ is expected to be at most εκ across genome (where ε > 1 is a constant). By discarding highly redundant HTSRs while retaining sufficient and homogeneous coverage depth (≈ εκ), this algorithm strongly decreases both running times and memory required to subsequently analyze WGS data, with often little impact on the expected results.

Interestingly, the digital normalization algorithm can be easily enhanced in several ways, so that the final subset contains fewer but more qualitative HTSRs. Unfortunately, these different improvements are scattered in distinct program tools. ROCK (Reducing Over-Covering K-mers) was therefore developed with the key purpose of implementing a fast, accurate and easy-to-use digital normalization procedure. It was designed to be used as a preprocessing step prior to performing fast genome de novo assembly.  The C++ source code is available under GNU Affero General Public License v3.0 at https://gitlab.pasteur.fr/vlegrand/ROCK.