Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Structural Dynamics Of Macromolecules
The structure of a bacterial analog of the nicotinic receptor (one color per subunit) inserted into the cell membrane (grey and orange). A representation of the volume accessible to ions is shown in yellow.
Publication : J. Mol. Biol.

X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 A resolution.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in J. Mol. Biol. - 03 Aug 2001

Li de la Sierra I, Munier-Lehmann H, Gilles AM, Bârzu O, Delarue M.

Link to Pubmed [PMID] – 11469859

Link to HAL – Click here

Link to DOI – 10.1006/jmbi.2001.4843

J Mol Biol. 2001 Aug 3;311(1):87-100.

The X-ray structure of Mycobacterium tuberculosis TMP kinase at 1.95 A resolution is described as a binary complex with its natural substrate TMP. Its main features involve: (i) a clear magnesium-binding site; (ii) an alpha-helical conformation for the so-called LID region; and (iii) a high density of positive charges in the active site. There is a network of interactions involving highly conserved side-chains of the protein, the magnesium ion, a sulphate ion mimicking the beta phosphate group of ATP and the TMP molecule itself. All these interactions conspire in stabilizing what appears to be the closed form of the enzyme. A complete multialignment of all (32) known sequences of TMP kinases is presented. Subtle differences in the TMP binding site were noted, as compared to the Escherichia coli, yeast and human enzyme structures, which have been reported recently. These differences could be used to design specific inhibitors of this essential enzyme of nucleotide metabolism. Two cases of compensatory mutations were detected in the TMP binding site of eukaryotic and prokaryotic enzymes. In addition, an intriguing high value of the electric field is reported in the vicinity of the phosphate group of TMP and the putative binding site of the gamma phosphate group of ATP.