Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Laure Mancini
Neural stem cells of the zebrafish adult telencephalon visualized by confocal microscopy
Publication : Science advances

Lineage hierarchies and stochasticity ensure the long-term maintenance of adult neural stem cells.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Science advances - 01 May 2020

Than-Trong E, Kiani B, Dray N, Ortica S, Simons B, Rulands S, Alunni A, Bally-Cuif L,

Link to Pubmed [PMID] – 32426477

Link to DOI – 10.1126/sciadv.aaz5424

Sci Adv 2020 May; 6(18): eaaz5424

The cellular basis and extent of neural stem cell (NSC) self-renewal in adult vertebrates, and their heterogeneity, remain controversial. To explore the functional behavior and dynamics of individual NSCs, we combined genetic lineage tracing, quantitative clonal analysis, intravital imaging, and global population assessments in the adult zebrafish telencephalon. Our results are compatible with a model where adult neurogenesis is organized in a hierarchy in which a subpopulation of deeply quiescent reservoir NSCs with long-term self-renewal potential generate, through asymmetric divisions, a pool of operational NSCs activating more frequently and taking stochastic fates biased toward neuronal differentiation. Our data further suggest the existence of an additional, upstream, progenitor population that supports the continuous generation of new reservoir NSCs, thus contributing to their overall expansion. Hence, we propose that the dynamics of vertebrate neurogenesis relies on a hierarchical organization where growth, self-renewal, and neurogenic functions are segregated between different NSC types.