Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Nature Microbiology

An archaeal origin of the Wood-Ljungdahl H4MPT branch and the emergence of bacterial methylotrophy

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Nature Microbiology - 01 Nov 2019

Panagiotis S Adam, Simonetta Gribaldo, Guillaume Borrel

Link to Pubmed [PMID] – 31451772

Link to HAL – pasteur-02948269

Link to DOI – 10.1038/s41564-019-0534-2

Nature Microbiology, 2019, 4 (12), pp.2155-2163. ⟨10.1038/s41564-019-0534-2⟩

The tetrahydromethanopterin (H 4 MPT) methyl branch of the Wood-Ljungdahl pathway is shared by archaeal and bacterial metabolisms that greatly contribute to the global carbon budget and greenhouse gas fluxes: methanogenesis and methylotrophy, including methanotrophy 1-3. It has been proposed that the H 4 MPT branch dates back to the last universal common ancestor 4-6. Interestingly, it has been identified in numerous recently sequenced and mostly uncultured non-methanogenic and non-methylotrophic archaeal and bacterial lineages, where its function remains unclear 5,7. Here, we have examined the distribution and phylogeny of the enzymes involved in the H 4 MPT branch and the biosyn-thesis of its cofactors in over 6,400 archaeal and bacterial genomes. We find that a full Wood-Ljungdahl H 4 MPT pathway is widespread in Archaea and is likely ancestral to this domain, whereas this is not the case for Bacteria. Moreover, the inclusion of recently sequenced lineages leads to an important shortening of the branch separating Archaea and Bacteria with respect to previous phylogenies of the H 4 MPT branch. Finally, the genes for the pathway are colocalized in many of the recently sequenced archaeal lineages, similar to bacteria. Together, these results weaken the last universal common ancestor hypothesis and rather favour an origin of the H 4 MPT branch in Archaea and its subsequent transfer to Bacteria. We propose a scenario for its potential initial role in the first bacterial recipients and its evolution up to the emergence of aerobic methylotrophy. Finally, we discuss how an ancient horizontal transfer not only triggered the emergence of key metabolic processes but also important transitions in Earth’s history. The Wood-Ljungdahl (WL) pathway consists of the reversible reduction of CO 2 into the carbonyl and methyl moieties of acetyl-coenzyme A (acetyl-CoA) through two separate (carbonyl and methyl) branches 8 (Fig.