Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© ALPS team
Publication : Molecular ecology resources

Supervised machine learning outperforms taxonomy-based environmental DNA metabarcoding applied to biomonitoring

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Molecular ecology resources - 17 Jul 2018

Cordier T, Forster D, Dufresne Y, Martins CI, Stoeck T, Pawlowski J

Link to Pubmed [PMID] – 30014577

Mol Ecol Resour 2018 Jul;

Biodiversity monitoring is the standard for environmental impact assessment of anthropogenic activities. Several recent studies showed that high-throughput amplicon sequencing of environmental DNA (eDNA metabarcoding) could overcome many limitations of the traditional morphotaxonomy-based bioassessment. Recently, we demonstrated that supervised machine learning (SML) can be used to predict accurate biotic indices values from eDNA metabarcoding data, regardless of the taxonomic affiliation of the sequences. However, it is unknown to which extent the accuracy of such models depends on taxonomic resolution of molecular markers or how SML compares with metabarcoding approaches targeting well-established bioindicator species. In this study, we address these issues by training predictive models upon five different ribosomal bacterial and eukaryotic markers and measuring their performance to assess the environmental impact of marine aquaculture on independent datasets. Our results show that all tested markers are yielding accurate predictive models, and that they all outperform the assessment relying solely on taxonomically assigned sequences. Remarkably, we did not find any significant difference in the performance of the models built using universal eukaryotic or prokaryotic markers. Using any molecular marker with a taxonomic range broad enough to comprise different potential bioindicator taxa, SML approach can overcome the limits of taxonomy-based eDNA bioassessment. This article is protected by copyright. All rights reserved.