Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : BMC microbiology

Identified members of the Streptomyces lividans AdpA regulon involved in differentiation and secondary metabolism

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in BMC microbiology - 03 Apr 2014

Guyet A, Benaroudj N, Proux C, Gominet M, Coppée JY, Mazodier P

Link to Pubmed [PMID] – 24694298

BMC Microbiol. 2014;14:81

BACKGROUND: AdpA is a key transcriptional regulator involved in the complex growth cycle of Streptomyces. Streptomyces are Gram-positive bacteria well-known for their production of secondary metabolites and antibiotics. Most work on AdpA has been in S. griseus, and little is known about the pathways it controls in other Streptomyces spp. We recently discovered interplay between ClpP peptidases and AdpA in S. lividans. Here, we report the identification of genes directly regulated by AdpA in S. lividans.

RESULTS: Microarray experiments revealed that the expression of hundreds of genes was affected in a S. lividans adpA mutant during early stationary phase cultures in YEME liquid medium. We studied the expression of the S. lividans AdpA-regulated genes by quantitative real-time PCR analysis after various times of growth. In silico analysis revealed the presence of potential AdpA-binding sites upstream from these genes; electrophoretic mobility shift assays indicated that AdpA binds directly to their promoter regions. This work identifies new pathways directly controlled by AdpA and that are involved in S. lividans development (ramR, SLI7885 also known as hyaS and SLI6586), and primary (SLI0755-SLI0754 encoding CYP105D5 and Fdx4) or secondary (cchA, cchB, and hyaS) metabolism.

CONCLUSIONS: We characterised six S. lividans AdpA-dependent genes whose expression is directly activated by this pleiotropic regulator. Several of these genes are orthologous to bldA-dependent genes in S. coelicolor. Furthermore, in silico analysis suggests that over hundred genes may be directly activated or repressed by S. lividans AdpA, although few have been described as being part of any Streptomyces AdpA regulons. This study increases the number of known AdpA-regulated pathways in Streptomyces spp.