Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Laure Mancini
Neural stem cells of the zebrafish adult telencephalon visualized by confocal microscopy
Publication : Development (Cambridge, England)

Gsk3beta/PKA and Gli1 regulate the maintenance of neural progenitors at the midbrain-hindbrain boundary in concert with E(Spl) factor activity

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Development (Cambridge, England) - 01 Sep 2008

Ninkovic J, Stigloher C, Lillesaar C, Bally-Cuif L

Link to Pubmed [PMID] – 18725518

Development 2008 Sep;135(18):3137-48

Neuronal production in the midbrain-hindbrain domain (MH) of the vertebrate embryonic neural tube depends on a progenitor pool called the ;intervening zone’ (IZ), located at the midbrain-hindbrain boundary. The progressive recruitment of IZ progenitors along the mediolateral (future dorsoventral) axis prefigures the earlier maturation of the MH basal plate. It also correlates with a lower sensitivity of medial versus lateral IZ progenitors to the neurogenesis inhibition process that maintains the IZ pool. This role is performed in zebrafish by the E(Spl) factors Her5 and Her11, but the molecular cascades cooperating with Her5/11, and those accounting for their reduced effect in the medial IZ, remain unknown. We demonstrate here that the kinases Gsk3beta and cAMP-dependent protein kinase A (PKA) are novel determinants of IZ formation and cooperate with E(Spl) activity in a dose-dependent manner. Similar to E(Spl), we show that the activity of Gsk3beta/PKA is sensed differently by medial versus lateral IZ progenitors. Furthermore, we identify the transcription factor Gli1, expressed in medial IZ cells, as an antagonist of E(Spl) and Gsk3beta/PKA, and demonstrate that the neurogenesis-promoting activity of Gli1 accounts for the reduced sensitivity of medial IZ progenitors to neurogenesis inhibitors and their increased propensity to differentiate. We also show that the expression and activity of Gli1 in this process are, surprisingly, independent of Hedgehog signaling. Together, our results suggest a model in which the modulation of E(Spl) and Gsk3beta/PKA activities by Gli1 underlies the dynamic properties of IZ maintenance and recruitment.