Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Journal of cell science

Dual-color visualization of trans-Golgi network to plasma membrane traffic along microtubules in living cells

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of cell science - 01 Jan 1999

Toomre D, Keller P, White J, Olivo JC, Simons K

Link to Pubmed [PMID] – 9841901

J. Cell. Sci. 1999 Jan;112 ( Pt 1):21-33

The mechanisms and carriers responsible for exocytic protein trafficking between the trans-Golgi network (TGN) and the plasma membrane remain unclear. To investigate the dynamics of TGN-to-plasma membrane traffic and role of the cytoskeleton in these processes we transfected cells with a GFP-fusion protein, vesicular stomatitis virus G protein tagged with GFP (VSVG3-GFP). After using temperature shifts to block VSVG3-GFP in the endoplasmic reticulum and subsequently accumulate it in the TGN, dynamics of TGN-to-plasma membrane transport were visualized in real time by confocal and video microscopy. Both small vesicles (1.5 microm long) are used as transport containers (TCs). These TCs rapidly moved out of the Golgi along curvilinear paths with average speeds of approximately 0.7 micrometer/second. Automatic computer tracking objectively determined the dynamics of different carriers. Fission and fusion of TCs were observed, suggesting that these late exocytic processes are highly interactive. To directly determine the role of microtubules in post-Golgi traffic, rhodamine-tubulin was microinjected and both labeled cargo and microtubules were simultaneously visualized in living cells. These studies demonstrated that exocytic cargo moves along microtubule tracks and reveals that carriers are capable of switching between tracks.