Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : European Journal of Organic Chemistry

Mycobacterium tuberculosis thymidine monophosphate kinase inhibitors: Biological evaluation and conformational analysis of 2 ‘- and 3 ‘-modified thymidine analogues

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in European Journal of Organic Chemistry - 01 Aug 2003

Van Rompaey, P., Nauwelaerts, K., Vanheusden, V., Rozenski, J., Munier-Lehmann, H., Herdewijn, P. and Van Calenbergh, S.

Eur. J. Org. Chem., 2003: 2911–2918. doi: 10.1002/ejoc.200300177

Mycobacterium tuberculosis thymidine monophosphate kinase (TMPKmt) has recently been introduced as a potential target for the structure-based design of anti-tuberculosis drugs. Based on the TMPKmt X-ray structure and previous S.A.R. studies, we synthesised the nucleoside analogues 3ab, 6ab, 7ab, and 8ab, modified in 2′- and 3′-position of the ribofuranose ring moiety. To our surprise, these analogues showed only moderate binding affinity (i.e. Ki between 118 and 1260 μM). This prompted us to investigate the conformational features of these nucleosides. We concluded that compounds of this series, especially 8ab, are strongly biased towards the “Northern” furanose ring conformation, whereas X-ray crystallography reveals a preference of TMPKmt for the opposite “Southern” conformers. This paper covers the synthesis, biological evaluation and conformational features (i.e. preferred ring puckering) of the 2′- and 3′-modified dT analogues.