Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : Journal of the American Chemical Society

Direct-detected 13C NMR to investigate the iron(III) hemophore HasA.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of the American Chemical Society - 11 Jan 2006

Caillet-Saguy C, Delepierre M, Lecroisey A, Bertini I, Piccioli M, Turano P,

Link to Pubmed [PMID] – 16390142

J Am Chem Soc 2006 Jan; 128(1): 150-8

Hemophore HasA is a 19 kDa iron(III) hemoprotein that participates in the shuttling of heme to a specific membrane receptor. In HasA, heme iron has an original coordination environment with a His/Tyr pair as axial ligands. Recently developed two-dimensional protonless (13)C-detected experiments provide the sequence-specific assignment of all but three protein residues in the close proximity of the paramagnetic center, thus overcoming limitations due to the short relaxation times induced by the presence of the iron(III) center. Mono-dimensional (13)C and (15)N experiments tailored for the detection of paramagnetic signals allow the identification of resonances of the axial ligands. These experiments are used to characterize the conformational features and the electronic structure of the heme iron(III) environment. The good complementarity among (1)H-, (13)C-, and (15)N-detected experiments is highlighted. A thermal high-spin/low-spin equilibrium is observed and is related to a modulation of the strength of the coordination bond between the iron and the Tyr74 axial ligand. The key role of a neighboring residue, His82, for the stability of the axial coordination and its involvement in the heme delivery to the receptor is discussed.