Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : The EMBO journal

The yeast RPL9B gene is regulated by modulation between two modes of transcription termination

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in The EMBO journal - 13 Apr 2012

Gudipati RK, Neil H, Feuerbach F, Malabat C, Jacquier A

Link to Pubmed [PMID] – 22505027

EMBO J. 2012 May;31(10):2427-37

RNA Pol II transcription termination can occur by at least two alternative pathways. Cleavage and polyadenylation by the CPF/CF complex precedes mRNA transcription termination, while the Nrd1 complex is involved in transcription termination of non-coding RNAs such as sno/snRNAs or cryptic unstable transcripts. Here we show that transcription of RPL9B, one of the two genes coding for the ribosomal protein Rpl9p, terminates by either of these two pathways. The balance between these two pathways is modulated in response to the RPL9 gene copy number, resulting in the autoregulation of RPL9B gene expression. This autoregulation mechanism requires a conserved potential stem-loop structure very close to the polyadenylation sites. We propose a model in which Rpl9p, when in excess, binds this conserved 3′-UTR structure, negatively interfering with cleavage and polyadenylation to the benefit of the Nrd1-dependent termination pathway, which, being coupled to degradation by the nuclear exosome, results in downregulation of RPL9B gene expression.