Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Antoinette Ryter
Serratia marcescens avec présence de flagelles (cils) péritriches. Famille des Enterobacteriaceae, bacille à Gram négatif, non sporulé, anaérobie facultatif, mobile, parfois encapsulé, pouvant synthétiser un pigment rouge ou rose. Présent dans les végétaux , le sol, et l'eau. A l'origine d'infections nosocomiales et résistant à de nombreux antibiotiques. Image colorisée.
Publication : Current opinion in structural biology

Machine learning for evolutionary-based and physics-inspired protein design: Current and future synergies.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Current opinion in structural biology - 01 Jun 2023

Malbranke C, Bikard D, Cocco S, Monasson R, Tubiana J

Link to Pubmed [PMID] – 36947951

Link to DOI – 10.1016/j.sbi.2023.102571

Curr Opin Struct Biol 2023 Jun; 80(): 102571

Computational protein design facilitates the discovery of novel proteins with prescribed structure and functionality. Exciting designs were recently reported using novel data-driven methodologies that can be roughly divided into two categories: evolutionary-based and physics-inspired approaches. The former infer characteristic sequence features shared by sets of evolutionary-related proteins, such as conserved or coevolving positions, and recombine them to generate candidates with similar structure and function. The latter approaches estimate key biochemical properties, such as structure free energy, conformational entropy, or binding affinities using machine learning surrogates, and optimize them to yield improved designs. Here, we review recent progress along both tracks, discuss their strengths and weaknesses, and highlight opportunities for synergistic approaches.