Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search

← Go to Research

Go back
Scroll to top
Share
© Research
Publication : biorxiv.org

Bridging the Gap: Integrating Cutting-edge Techniques into Biological Imaging with deepImageJ

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in biorxiv.org - 15 Jan 2024

Caterina Fuster-Barceló, Carlos García López de Haro, Estibaliz Gómez-de-Mariscal, Wei Ouyang, Jean-Christophe Olivo-Marin, Daniel Sage and Arrate Muñoz-Barrutia

Link to DOI – https://doi.org/10.1101/2024.01.12.575015

bioRxiv, 2024

This manuscript showcases the latest advancements in deepImageJ, a pivotal Fiji/ImageJ plugin for bioimage analysis in the life sciences. The plugin, known for its user-friendly interface, facilitates the application of diverse pre-trained neural networks to custom data. The manuscript demonstrates a number of deepImageJ capabilities, particularly in executing complex pipelines, 3D analysis, and processing large images.

A key development is the integration of the Java Deep Learning Library (JDLL), expanding deepImageJ’s compatibility with various deep learning frameworks, including TensorFlow, PyTorch, and ONNX. This allows for running multiple engines within a single Fiji/ImageJ instance, streamlining complex bioimage analysis tasks.

The manuscript details three case studies to demonstrate these capabilities. The first explores integrated image-to image translation and nuclei segmentation. The second focuses on 3D nuclei segmentation. The third case study deals with large image segmentation.

These studies underscore deepImageJ’s versatility and power in bioimage analysis, emphasizing its role as a critical tool for life scientists and researchers. The advancements in deepImageJ bridge the gap between deep learning model developers and end-users, enabling a more accessible and efficient approach to biological image analysis.

The advancements in deepImageJ, detailed in this paper, represent a significant leap in bioimage analysis, crucial for life sciences. By enhancing this Fiji/ImageJ plugin, the research bridges the gap between complex deep learning models and practical applications, making advanced bioimage analysis accessible to a broader audience. This integration of the Java Deep Learning Library (JDLL) within deepImageJ is particularly noteworthy, as it expands compatibility with leading deep learning frameworks. This allows for the seamless execution of multiple models in a single instance, simplifying the construction of complex image analysis pipelines. The implications of this research are far-reaching, extending beyond academic circles to potentially impact various sectors, including healthcare, pharmaceuticals, and biotechnology. The enhanced capabilities of deepImageJ in handling intricate pipelines, 3D analysis, and large images facilitate detailed and efficient analysis of biological data. Such advancements are vital for accelerating research and development in medical imaging, drug discovery, and understanding complex biological processes. This manuscript contribution to the field of bioimage analysis is significant, offering a tool that empowers researchers, irrespective of their computational expertise, to leverage advanced technologies in their work. The wide applicability and ease of use of deepImageJ have the potential to foster interdisciplinary collaborations, drive innovation, and facilitate discoveries across various scientific and industrial sectors.