Lien vers Pubmed [PMID] – 15107419
J. Biol. Chem. 2004 Jul;279(27):27861-9
NEMO (NF-kappaB essential modulator) plays a key role in the canonical NF-kappaB pathway as the scaffold/regulatory component of the IkappaB kinase (IKK) complex. The self-association of NEMO involves the C-terminal halves of the polypeptide chains containing two putative coiled-coil motifs (a CC2 and a LZ leucine zipper), a proline-rich region, and a ZF zinc finger motif. Using purified truncation mutants, we showed that the minimal oligomerization domain of NEMO is the CC2-LZ segment and that both CC2 and LZ subdomains are necessary to restore the LPS-dependent activation of the NF-kappaB pathway in a NEMO-deficient cell line. We confirmed the association of the oligomerization domain in a trimer and investigated the specific role of CC2 and LZ subdomains in the building of the oligomer. Whereas a recombinant CC2-LZ polypeptide self-associated into a trimer with an association constant close to that of the wild-type protein, the isolated CC2 and LZ peptides, respectively, formed trimers and dimers with weaker association constants. Upon mixing, isolated CC2 and LZ peptides associated to form a stable hetero-hexamer as shown by gel filtration and fluorescence anisotropy experiments. We propose a structural model for the organization of the oligomerization domain of activated NEMO in which three C-terminal domains associate into a pseudo-hexamer forming a six-helix bundle. This model is discussed in relation to the mechanism of activation of the IKK complex by upstream activators.