Lien vers Pubmed [PMID] – 14668334
J Biol Chem 2004 Mar; 279(10): 9462-74
The Schizosaccharomyces pombe fep1(+) gene encodes a GATA transcription factor that represses the expression of iron transport genes in response to elevated iron concentrations. This transcriptional response is altered only in strains harboring a combined deletion of both tup11(+) and tup12(+) genes. This suggests that Tup11 is capable of negatively regulating iron transport gene expression in the absence of Tup12 and vice versa. The tup11(+)- and tup12(+)-encoded proteins resemble the Saccharomyces cerevisiae Tup1 corepressor. Using yeast two-hybrid analysis we show that Tup11 and Fep1 physically interact with each other. The C-terminal region from amino acids 242 to 564 of Fep1 is required for interaction with Tup11. Within this region, a minimal domain encompassing amino acids 405-541 was sufficient for Tup11-Fep1 association. Deletion mapping analysis revealed that the WD40-repeat sequence motifs of Tup11 are necessary for its interaction with Fep1. Analysis of Tup11 mutants with single amino acid substitutions in the WD40 repeats suggested that the Fep1 transcription factor interacts with a putative flat upper surface on the predicted beta-propeller structure of this motif. Further analysis by in vivo coimmunoprecipitation showed that Tup11 and Fep1 are physically associated. In vitro pull-down experiments further verified a direct interaction between the Fep1 C terminus and the Tup11 C-terminal WD40 repeat domain. Taken together, these results describe the first example of a physical interaction between a corepressor and an iron-sensing factor controlling the expression of iron uptake genes.