Lien vers Pubmed [PMID] – 12622810
Mol. Microbiol. 2003 Mar;47(6):1523-43
The pathogenic fungus Candida albicans commonly causes mucosal surface infections. In immunocompromised patients, C. albicans may penetrate into deeper tissue, enter the bloodstream and disseminate within the host causing life-threatening systemic infections. In order to elucidate how C. albicans responds to the challenge of a blood environment, we analysed the transcription profile of C. albicans cells exposed to human blood using genomic arrays and a cDNA subtraction protocol. By combining data obtained with these two methods, we were able to identify unique sets of different fungal genes specifically expressed at different stages of this model that mimics bloodstream infections. By removing host cells and incubation in plasma, we were also able to identify several genes in which the expression level was significantly influenced by the presence of these cells. Differentially expressed genes included those that are involved in the general stress response, antioxidative response, glyoxylate cycle as well as putative virulence attributes. These data point to possible mechanisms by which C. albicans ensures survival in the hostile environment of the blood and how the fungus may escape the bloodstream as an essential step in its systemic dissemination.