Lien vers Pubmed [PMID] – 18517320
Phys Rev E Stat Nonlin Soft Matter Phys 2008 Mar;77(3 Pt 1):030901
Active cellular transport is a fundamental mechanism for protein and vesicle delivery, cell cycle, and molecular degradation. Viruses can hijack the transport system and use it to reach the nucleus. Most transport processes consist of intermittent dynamics, where the motion of a particle, such as a virus, alternates between pure Brownian and directed movement along microtubules. In this Rapid Communication, we estimate the mean time for a particle to attach to a microtubule network. This computation leads to a coarse grained equation of the intermittent motion in radial and cylindrical geometries. Finally, by using the degradation activity inside the cytoplasm, we obtain refined asymptotic estimations for the probability and the mean time a virus reaches a small nuclear pore.