Lien vers Pubmed [PMID] – 23523245
Lien DOI – 10.1016/j.cub.2013.03.002
Curr Biol 2013 Apr; 23(7): 588-93
Numb acts as a cell-fate determinant during asymmetric and stem cell divisions in both vertebrates and invertebrates [1, 2]. In Drosophila, Numb is unequally segregated in asymmetrically dividing sensory organ precursor cells (SOPs). Numb is inherited by the pIIb cell (Notch OFF) and is absent from the pIIa cell (Notch ON) [3, 4]. Numb is required to establish directional Notch signaling during cytokinesis [3, 5-7]. Using real-time imaging of a functional GFP-tagged Numb, we show that Numb relocalizes during cytokinesis from the basal cortex of pIIb to subapical endosomes. This relocalization appeared to depend on its interaction with the α-adaptin [8, 9]. Live imaging of Sanpodo (Spdo), a membrane protein interacting with Numb and regulating the trafficking of Notch [6, 7, 10-15], revealed that Spdo is internalized during cytokinesis and coaccumulates with Numb in pIIb endosomes. Using a GFP-tagged Notch [6], we found that Notch coaccumulates with Spdo in a Numb-dependent manner in these pIIb endosomes. Numb was, however, dispensable for the internalization of Notch and Spdo. We propose that Numb interacts with internalized Spdo-Notch oligomers at sorting endosomes and inhibits the recycling of Notch, thereby creating an asymmetry in Notch distribution along the pIIa-pIIb interface and regulating binary fate choice.