Lien vers Pubmed [PMID] – 16341091
EMBO J. 2005 Dec;24(24):4356-67
Integrons play a major role in the dissemination of antibiotic resistance genes among Gram-negative pathogens. Integron gene cassettes form circular intermediates carrying a recombination site, attC, and insert into an integron platform at a second site, attI, in a reaction catalyzed by an integron-specific integrase IntI. The IntI1 integron integrase preferentially binds to the ‘bottom strand’ of single-stranded attC. We have addressed the insertion mechanism in vivo using a recombination assay exploiting plasmid conjugation to exclusively deliver either the top or bottom strand of different integrase recombination substrates. Recombination of a single-stranded attC site with an attI site was 1000-fold higher for one strand than for the other. Conversely, following conjugative transfer of either attI strand, recombination with attC is highly unfavorable. These results and those obtained using mutations within a putative attC stem-and-loop strongly support a novel integron cassette insertion model in which the single bottom attC strand adopts a folded structure generating a double strand recombination site. Thus, recombination would insert a single strand cassette, which must be subsequently processed.