Lien vers Pubmed [PMID] – 37734676
Lien vers HAL – hal-04338775
Lien DOI – 10.1016/j.jhin.2023.07.028
J Hosp Infect 2023 Nov; 141(): 132-141
Since the onset of the COVID-19 pandemic, mathematical models have been widely used to inform public health recommendations regarding COVID-19 control in healthcare settings. The objective of this study was to systematically review SARS-CoV-2 transmission models in healthcare settings, and to summarize their contributions to understanding nosocomial COVID-19. A systematic search and review of published articles indexed in PubMed was carried out. Modelling studies describing dynamic inter-individual transmission of SARS-CoV-2 in healthcare settings, published by mid-February 2022 were included. Models have mostly focused on acute-care and long-term-care facilities in high-income countries. Models have quantified outbreak risk, showing great variation across settings and pandemic periods. Regarding surveillance, routine testing rather than symptom-based was highlighted as essential for COVID-19 prevention due to high rates of silent transmission. Surveillance impacts depended critically on testing frequency, diagnostic sensitivity, and turn-around time. Healthcare re-organization also proved to have large epidemiological impacts: beyond obvious benefits of isolating cases and limiting inter-individual contact, more complex strategies (staggered staff scheduling, immune-based cohorting) reduced infection risk. Finally, vaccination impact, while highly effective for limiting COVID-19 burden, varied substantially depending on assumed mechanistic impacts on infection acquisition, symptom onset and transmission. Modelling results form an extensive evidence base that may inform control strategies for future waves of SARS-CoV-2 and other viral respiratory pathogens. We propose new avenues for future models of healthcare-associated outbreaks, with the aim of enhancing their efficiency and contributions to decision-making.