Lien vers Pubmed [PMID] – 16014871
Mol. Biol. Evol. 2005 Nov;22(11):2147-56
Gene essentiality in bacteria has been identified in silico, focusing on gene persistence, or experimentally, focusing on the growth of knockouts in rich media. Comparing 55 genomes of Firmicutes and Gamma-proteobacteria to identify the genes which, while persistent among genomes, do not lead to a lethal phenotype when inactivated, we show that the characteristics of persistence, conservation, expression, and location are shared between persistent nonessential (PNE) genes and experimentally essential genes. PNE genes show an overrepresentation of genes related to maintenance and stress response. This outlines the limits of current experimental techniques to define gene essentiality and highlights the essential role of genes implicated in maintenance which, although dispensable for growth, are not dispensable from an evolutionary point of view. Firmicutes and Gamma-proteobacteria are mostly differing in the construction of the cell envelope, DNA replication and proofreading, and RNA degradation. In addition to suggesting functions for persistent genes that had until now resisted identification, we show that these genes have many characters in common with experimentally identified essential genes. They should then be regarded as truly essential genes.