Lien vers Pubmed [PMID] – 16048998
J. Biol. Chem. 2005 Oct;280(40):33953-9
Proteins of the 6-kDa early secreted antigenic target (ESAT-6) secretion system-1 of Mycobacterium tuberculosis are not only strongly involved in the anti-mycobacterial Th1-host immune response but are also key players for virulence. In this study, protein engineering together with bioinformatic, immunological, and virulence analyses allowed us to pinpoint regions of the ESAT-6 molecule that are critical for its biological activity in M. tuberculosis. Mutation of the Trp-Xaa-Gly motif, conserved in a wide variety of ESAT-6-like proteins, abolished complex formation with the partner protein CFP-10, induction of specific T-cell responses, and virulence. Replacement of conserved Leu residues interfered with secretion, coiled-coil formation, and virulence, whereas certain mutations at the extreme C terminus did not affect secretion but caused attenuation, possibly because of altered ESAT-6 targeting or trafficking. In contrast, the mutation of several residues on the outer surface of the four-helical bundle structure of the ESAT-6.CFP-10 complex showed much less effect. Construction of recombinant BCG expressing ESAT-6 with a C-terminal hexahistidine tag allowed us to co-purify ESAT-6 and CFP-10, experimentally confirming their strong interaction both in and outside of the mycobacterial cell. The strain induced potent, antigen-specific T-cell responses and intermediate in vivo growth in mice, suggesting that it remained immunogenic and biologically active despite the tag. Together with previous NMR data, the results of this study have allowed a biologically relevant model of the ESAT-6.CFP-10 complex to be constructed that is critical for understanding the structure-function relationship in tuberculosis pathogenesis.