Lien vers Pubmed [PMID] – 26602091
J Transl Med 2015 Nov;13:369
BACKGROUND: Plasmodium falciparum malaria in India is characterized by high rates of severe disease, with multiple organ dysfunction (MOD)-mainly associated with acute renal failure (ARF)-and increased mortality. The objective of this study is to identify cytokine signatures differentiating severe malaria patients with MOD, cerebral malaria (CM), and cerebral malaria with MOD (CM-MOD) in India. We have previously shown that two cytokines clusters differentiated CM from mild malaria in Maharashtra. Hence, we also aimed to determine if these cytokines could discriminate malaria subphenotypes in Odisha.
METHODS: P. falciparum malaria patients from the SCB Medical College Cuttack in the Odisha state in India were enrolled along with three sets of controls: healthy individuals, patients with sepsis and encephalitis (n = 222). We determined plasma concentrations of pro- and anti-inflammatory cytokines and chemokines for all individuals using a multiplex assay. We then used an ensemble of statistical analytical methods to ascertain whether particular sets of cytokines/chemokines were predictors of severity or signatures of a disease category.
RESULTS: Of the 26 cytokines/chemokines tested, 19 increased significantly during malaria and clearly distinguished malaria patients from controls, as well as sepsis and encephalitis patients. High amounts of IL-17, IP-10, and IL-10 predicted MOD, decreased IL-17 and MIP-1α segregated CM-MOD from MOD, and increased IL-12p40 differentiated CM from CM-MOD. Most severe malaria patients with ARF exhibited high levels of IL-17.
CONCLUSION: We report distinct differences in cytokine production correlating with malarial disease severity in Odisha and Maharashtra populations in India. We show that CM, CM-MOD and MOD are clearly distinct malaria-associated pathologies. High amounts of IL-17, IP-10, and IL-10 were predictors of MOD; decreased IL-17 and MIP-1α separated CM-MOD from MOD; and increased IL-12p40 differentiated CM from CM-MOD. Data also suggest that the IL-17 pathway may contribute to malaria pathogenesis via different regulatory mechanisms and may represent an interesting target to mitigate the pathological processes in malaria-associated ARF.