Lien vers Pubmed [PMID] – 12797979
Infect. Genet. Evol. 2003 Feb;2(3):173-83
Trypanosoma cruzi is thought to undergo predominant clonal evolution, as determined by population genetics studies. However, this model does not exclude occasional recombination, which existence is strongly suggested by several recent studies. We sequenced a portion of the maxicircle cytochrome b (CYb) gene and of the nuclear rRNA promoter region from representative strains of six T. cruzi genetic lineages isolated from anthroponotic environments and man (lineages IIb, IId and IIe), sylvatic environments (lineages IIa and IIc) or both (lineage I). Phylogenetic analyses based on the two genes were incongruent. Remarkably, in lineage IIe, CYb and rRNA sequences were very closely related to those of lineages IIc and IIb, respectively. One stock of lineage IId showed rRNA sequence heterogeneity, with both IIb-like and IIc-like copies. Analysis of the size variation of six distinct pairs of putative homologous chromosomes revealed a bimodal distribution of chromosomal sizes across T. cruzi. Notably, stocks of lineages IId and IIe had several chromosomal pairs distributed in distinct modes, with the corresponding modes individually found in lineages IIb and IIc. Together, these data indicate the origin of lineages IId and IIe by hybridization between representatives of lineages IIb and IIc. CYb and rRNA sequences clustered into three and four major lineages, respectively. Data were in agreement with the distinction of six genetic lineages, but not with their proposed grouping into two primary lineages, as lineage II was not monophyletic. Based on a CYb substitution rate of 1% per million years (Myr), the major lineages are estimated to have diverged around 10 million years ago.