Lien vers Pubmed [PMID] – 34951591
Lien DOI – 10.7554/eLife.71946
Elife 2021 Dec; 10():
Successful control of Mycobacterium tuberculosis (Mtb) infection by macrophages relies on immunometabolic reprogramming, where the role of fatty acids (FAs) remains poorly understood. Recent studies unraveled Mtb’s capacity to acquire saturated and monounsaturated FAs via the Mce1 importer. However upon activation, macrophages produce polyunsaturated FAs (PUFAs), mammal-specific FAs mediating the generation of immunomodulatory eicosanoids. Here, we asked how Mtb modulates de novo synthesis of PUFAs in primary mouse macrophages and whether this benefits host or pathogen. Quantitative lipidomics revealed that Mtb infection selectively activates the biosynthesis of w6 PUFAs upstream of the eicosanoid precursor arachidonic acid (AA), via transcriptional activation of Fads2. Inhibiting FADS2 in infected macrophages impaired their inflammatory and antimicrobial responses but had no effect on Mtb growth in mice. Using a click-chemistry approach, we found that Mtb efficiently imports w6 PUFAs via Mce1 in axenic culture, including AA. Further, Mtb preferentially internalized AA over all other FAs within infected macrophages, by mechanisms partially depending on Mce1 and supporting intracellular persistence. Notably, IFNγ repressed de novo synthesis of AA by infected mouse macrophages and restricted AA import by intracellular Mtb. Together, these findings identify AA as a major FA substrate for intracellular Mtb, whose mobilization by innate immune responses is opportunistically hijacked by the pathogen and downregulated by IFNγ.