Lien vers Pubmed [PMID] – 31189086
Lien DOI – S1096-7176(19)30071-010.1016/j.ymben.2019.06.001
Metab Eng 2019 09; 55(): 12-22
Resource Balance Analysis (RBA) is a computational method based on resource allocation, which performs accurate quantitative predictions of whole-cell states (i.e. growth rate, metabolic fluxes, abundances of molecular machines including enzymes) across growth conditions. We present an integrated workflow of RBA together with the Python package RBApy. RBApy builds bacterial RBA models from annotated genome-scale metabolic models by adding descriptions of cellular processes relevant for growth and maintenance. The package includes functions for model simulation and calibration and for interfacing to Escher maps and Proteomaps for visualization. We demonstrate that RBApy faithfully reproduces results obtained by a hand-curated and experimentally validated RBA model for Bacillus subtilis. We also present a calibrated RBA model of Escherichia coli generated from scratch, which obtained excellent fits to measured flux values and enzyme abundances. RBApy makes whole-cell modelling accessible for a wide range of bacterial wild-type and engineered strains, as illustrated with a CO2-fixing Escherichia coli strain. AVAILABILITY: RBApy is available at /https://github.com/SysBioInra/RBApy, under the licence GNU GPL version 3, and runs on Linux, Mac and Windows distributions.