Lien vers Pubmed [PMID] – 38907409
Lien DOI – 10.1103/PhysRevE.109.L052105
Phys Rev E 2024 May; 109(5): L052105
This paper addresses the exploration-exploitation dilemma inherent in decision-making, focusing on multiarmed bandit problems. These involve an agent deciding whether to exploit current knowledge for immediate gains or explore new avenues for potential long-term rewards. We here introduce a class of algorithms, approximate information maximization (AIM), which employs a carefully chosen analytical approximation to the gradient of the entropy to choose which arm to pull at each point in time. AIM matches the performance of Thompson sampling, which is known to be asymptotically optimal, as well as that of Infomax from which it derives. AIM thus retains the advantages of Infomax while also offering enhanced computational speed, tractability, and ease of implementation. In particular, we demonstrate how to apply it to a 50-armed bandit game. Its expression is tunable, which allows for specific optimization in various settings, making it possible to surpass the performance of Thompson sampling at short and intermediary times.