Lien vers Pubmed [PMID] – 34175444
Lien DOI – S2213-7165(21)00152-110.1016/j.jgar.2021.05.019
J Glob Antimicrob Resist 2021 09; 26(): 177-179
Using whole-genome sequencing (WGS), we aimed to characterise a Pseudomonas aeruginosa ST143 clinical strain (Pb9) that presented resistance to meropenem and imipenem and susceptibility to piperacillin/tazobactam and broad-spectrum cephalosporins.The antimicrobial susceptibility profile was confirmed by broth microdilution. WGS was performed using an Illumina MiSeq platform to identify possible genetic determinants of β-lactam resistance. Transcription levels of chromosomally encoded efflux systems and oprD were evaluated by RT-qPCR.WGS analysis showed that no acquired carbapenemase-encoding gene was found in isolate Pb9, although mutations in the chromosomally encoded β-lactamase genes blaOXA-488, blaPIB-1 and blaPDC-5 were observed. In addition, we detected a premature stop codon in the major porin-encoding gene oprD coupled with hyperexpression of MexAB-OprM and MexEF-OprN.Our results suggest that the β-lactam resistance phenotype presented by strain Pb9 might be related to an association of OprD loss with hyperexpression of the efflux pump systems MexAB-OprM and MexEF-OprN. However, the contribution of OXA-488, PDC-5 and PIB-1 to this phenotype remains unclear and warrants further investigation.