Lien vers Pubmed [PMID] – 20231472
Proc. Natl. Acad. Sci. U.S.A. 2010 Mar;107(13):5925-30
Studies here respond to two long-standing questions: Are human “pre/pro-B” CD34(+)CD10(-)CD19(+) and “common lymphoid progenitor (CLP)/early-B” CD34(+)CD10(+)CD19(-) alternate precursors to “pro-B” CD34(+)CD19(+)CD10(+) cells, and do the pro-B cells that arise from these progenitors belong to the same or distinct B-cell development pathways? Using flow cytometry, gene expression profiling, and Ig V(H)-D-J(H) sequencing, we monitor the initial 10 generations of development of sorted cord blood CD34(high)Lineage(-) pluripotential progenitors growing in bone marrow S17 stroma cocultures. We show that (i) multipotent progenitors (CD34(+)CD45RA(+)CD10(-)CD19(-)) directly generate an initial wave of Pax5(+)TdT(-) “unilineage” pre/pro-B cells and a later wave of “multilineage” CLP/early-B cells and (ii) the cells generated in these successive stages act as precursors for distinct pro-B cells through two independent layered pathways. Studies by others have tracked the origin of B-lineage leukemias in elderly mice to the mouse B-1a pre/pro-B lineage, which lacks the TdT activity that diversifies the V(H)-D-J(H) Ig heavy chain joints found in the early-B or B-2 lineage. Here, we show a similar divergence in human B-cell development pathways between the Pax5(+)TdT(-) pre/pro-B differentiation pathway that gives rise to infant B-lineage leukemias and the early-B pathway.