Lien vers Pubmed [PMID] – 19577591
Mol. Aspects Med. 2009 Dec;30(6):347-55
The anthrax letters crisis, following the discovery of a major bacterial warfare program in the USSR and the realization that Irak had been on the verge of using anthrax as a weapon during the first Gulf war, had the consequence of putting anthrax back on the agenda of scientists. Fortunately, although it was mostly unknown by the public before these events, it was far from unknown by microbiologists. Already mentioned in the bible as a disease of herbivores, it remained a major cause of death for animals all over the planet until the end of the 19th century, with occasional, sometimes extensive, contamination of human beings. The aetiological agent, Bacillus anthracis, was identified by French and German scientists in the 1860s and 1870s. This was the first time that a disease could be attributed to a specific microorganism. The discovery by Koch that this bacterium formed spores greatly contributed to the understanding of the disease epidemiology. Studies on the pathophysiology of anthrax led to the identification of two major virulence factors, the capsule, protecting the bacilli against phagocytosis, and a tripartite toxin. The latter consists of two toxins with a common component (protecting antigen, PA) that allows the binding to and penetration into cells of two enzymes, the oedema factor EF, a calmodulin dependent adenylate cyclase, and the lethal factor LF, a specific zinc metalloprotease. The primary targets of these toxins would seem to be cells of innate immunity that would otherwise impair multiplication of the bacilli. If detected early enough, B. anthracis infections can be stopped by using antibiotics such as ciprofloxacin. Infection of animals can be prevented by the administration of vaccines, the first of which was developed by Pasteur after an historical testing at Pouilly-le-Fort which marked the beginning of the science of vaccines.