Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Institut Pasteur
Culture de myotubes murins infectés par le virus de la rage fixe, observée en immunoflorescence indirecte.
Publication : Journal of virology

Virus infection switches TLR-3-positive human neurons to become strong producers of beta interferon

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of virology - 01 Oct 2005

Préhaud C, Mégret F, Lafage M, Lafon M

Link to Pubmed [PMID] – 16188991

J. Virol. 2005 Oct;79(20):12893-904

To study the capacity of human neurons to mount innate immunity responses to viral infections, we infected cells of a human postmitotic neuron-derivative cell line, NT2-N, with rabies virus (RABV) and herpes simplex type 1 (HSV-1). Changes in neuronal gene expression were analyzed by use of Affymetrix microarrays. Applying a twofold cutoff, RABV increased the transcription of 228 genes, and HSV-1 increased the transcription of 263 genes. The most striking difference between the two infections concerns genes involved in immunity. These genes represent 24% of the RABV-upregulated genes and only 4.9% of the HSV-1-upregulated genes. Following RABV infection, the most upregulated genes belong to the immunity cluster and included almost exclusively genes for beta interferon (IFN-beta) primary and secondary responses as well as genes for chemokines (CCL-5, CXCL-10) and inflammatory cytokines (interleukin 6 [IL-6], tumor necrosis factor alpha, interleukin 1 alpha). In contrast, HSV-1 infection did not increase IFN-beta gene transcripts and triggered the production of only IL-6 and interferon regulatory factor 1 mRNAs. The microarray results were confirmed by real-time PCR, immunocytochemistry, and enzyme-linked immunosorbent assay. Human neurons were found to express Toll-like receptor 3. They produced IFN-beta after treatment with poly(I:C) but not with lipopolysaccharide. Thus, human neurons can mount an innate immunity response to double-stranded RNA. These observations firmly establish that human neurons, in absence of glia, have the intrinsic machinery to sense virus infection.

http://www.ncbi.nlm.nih.gov/pubmed/16188991