Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© K. Stapleford, M. Vignuzzi, I. Bonne, C. Schmitt, J-M. Panaud
Chikungunya virus emerging from infected C6/36 mosquito cells (Aedes albopictus)
Publication : Journal of virology

Viral polymerase-helicase complexes regulate replication fidelity to overcome intracellular nucleotide depletion

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Journal of virology - 26 Aug 2015

Stapleford KA, Rozen-Gagnon K, Das PK, Saul S, Poirier EZ, Blanc H, Vidalain PO, Merits A, Vignuzzi M

Link to Pubmed [PMID] – 26311883

J. Virol. 2015 Aug;

To date, the majority of work on RNA virus replication fidelity has focused on the viral RNA polymerase, while the potential role of other viral replicase proteins in this process is poorly understood. Previous studies used resistance to broad-spectrum RNA mutagens, such as ribavirin, to identify polymerases with increased fidelity that avoid misincorporation of such base analogues. We identified a novel variant in the alphavirus viral helicase/protease, nonstructural protein 2 (nsP2) that operates in concert with the viral polymerase nsP4 to further alter replication complex fidelity, a functional linkage that was conserved among the alphavirus genus. Purified chikungunya virus nsP2 presented delayed helicase activity of the high-fidelity enzyme, yet purified replication complexes manifested stronger RNA polymerization kinetics. Because mutagenic nucleoside analogs such as ribavirin also affect intracellular nucleotide pools, we addressed the link between nucleotide depletion and replication fidelity by using purine and pyrimidine biosynthesis inhibitors. High-fidelity viruses were more resistant to these conditions and viral growth could be rescued by the addition of exogenous nucleosides, suggesting that mutagenesis by base analogues requires nucleotide pool depletion. Taken together this study provides a novel function for nsP2, highlighting the role of other components of the replication complex in regulating viral replication fidelity and suggests that viruses can alter their replication complex fidelity to overcome intracellular nucleotide-depleting conditions.

IMPORTANCE: Previous studies using the RNA mutagen ribavirin to select for drug-resistant variants have highlighted the essential role of the viral RNA-dependent RNA polymerase (RdRp) in regulating replication fidelity. However, the role of other viral replicase components in replication fidelity has not been studied in detail. Here we identified a RNA mutagen-resistant variant of the nsP2 helicase/protease that conferred increased fidelity, yet could not operate in the same manner as high-fidelity polymerases. We show that the alphavirus helicase is a key component of the fidelity-regulating machinery. Our data show that the RNA mutagenic activity of compounds such as ribavirin is coupled to and potentiated by nucleotide depletion, and that RNA viruses can fine-tune their replication fidelity when faced with an intracellular environment depleted of nucleotides.

http://www.ncbi.nlm.nih.gov/pubmed/26311883