Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Full Professor
  • Graduate Student
  • Lab assistant
  • Non-permanent Researcher
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : Biology of reproduction

Uterine contractions depend on KIT-positive interstitial cells in the mouse: genetic and pharmacological evidence

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in Biology of reproduction - 14 May 2008

Allix S, Reyes-Gomez E, Aubin-Houzelstein G, Noël D, Tiret L, Panthier JJ, Bernex F

Link to Pubmed [PMID] – 18480468

Biol. Reprod. 2008 Sep;79(3):510-7

In the gastrointestinal tract, interstitial cells of Cajal (ICCs) generate a pacemaker activity. They produce electric slow waves that trigger and coordinate gut smooth muscle contractions. Interstitial cells of Cajal’s slender shape is revealed by KIT immunostaining. Based on several features, including KIT expression and KIT dependence, ICC-like cells were identified in nongastrointestinal tissues. Here, we investigated in the mouse whether uterine contractions depend on ICC-like cells’ activity. By labeling KIT-expressing cells, we found putative ICC-like cells in the uterus, observed as KIT-positive interstitial, long spindle-shaped cells with fine branched cytoplasm processes, distributed in muscular layers and in subepithelial connective tissue. We then checked the potential KIT dependence of ex vivo contractile activity of the uterus by combining genetic and pharmacological approaches, using the Kit W-v hypomorphic mutation, and imatinib as a KIT noncompetitive inhibitor. We found a significant reduction in frequency of longitudinal uterine contractions in Kit W-v/Kit W-v compared with Kit+/+ mice, whereas amplitude was unaffected. There was no difference in frequency or amplitude of circular uterine contractions between Kit W-v/Kit W-v and Kit+/+ mice. Ex vivo treatment of Kit+/+ uterine horns with imatinib resulted in a dose-dependent reduction of the frequency and amplitude of longitudinal myometrial contractions. Amplitude and frequency of circular contractions were unaffected in presence of imatinib. These concurrent results suggest that longitudinal contractions of the uterus depend on a KIT signaling pathway of ICC-like cells. The existence of ICC-like cells in the myometrium may enhance our understanding of uterine spontaneous contractile activity and suggest new approaches for treatment of uterine contractility disorders.

http://www.ncbi.nlm.nih.gov/pubmed/18480468