Search anything and hit enter
  • Teams
  • Members
  • Projects
  • Events
  • Calls
  • Jobs
  • publications
  • Software
  • Tools
  • Network
  • Equipment

A little guide for advanced search:

  • Tip 1. You can use quotes "" to search for an exact expression.
    Example: "cell division"
  • Tip 2. You can use + symbol to restrict results containing all words.
    Example: +cell +stem
  • Tip 3. You can use + and - symbols to force inclusion or exclusion of specific words.
    Example: +cell -stem
e.g. searching for members in projects tagged cancer
Search for
Count
IN
OUT
Content 1
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Content 2
  • member
  • team
  • department
  • center
  • program_project
  • nrc
  • whocc
  • project
  • software
  • tool
  • patent
  • Administrative Staff
  • Assistant Professor
  • Associate Professor
  • Clinical Research Assistant
  • Clinical Research Nurse
  • Clinician Researcher
  • Department Manager
  • Dual-education Student
  • Full Professor
  • Honorary Professor
  • Lab assistant
  • Master Student
  • Non-permanent Researcher
  • Nursing Staff
  • Permanent Researcher
  • Pharmacist
  • PhD Student
  • Physician
  • Post-doc
  • Prize
  • Project Manager
  • Research Associate
  • Research Engineer
  • Retired scientist
  • Technician
  • Undergraduate Student
  • Veterinary
  • Visiting Scientist
  • Deputy Director of Center
  • Deputy Director of Department
  • Deputy Director of National Reference Center
  • Deputy Head of Facility
  • Director of Center
  • Director of Department
  • Director of Institute
  • Director of National Reference Center
  • Group Leader
  • Head of Facility
  • Head of Operations
  • Head of Structure
  • Honorary President of the Departement
  • Labex Coordinator
Search
Go back
Scroll to top
Share
© Research
Publication : ACS applied materials & interfaces

Using Adhesive Micropatterns and AFM to Assess Cancer Cell Morphology and Mechanics.

Scientific Fields
Diseases
Organisms
Applications
Technique

Published in ACS applied materials & interfaces - 20 Sep 2023

Liboz M, Allard A, Malo M, Lamour G, Letort G, Thiébot B, Labdi S, Pelta J, Campillo C

Link to Pubmed [PMID] – 37682772

Link to DOI – 10.1021/acsami.3c07785

ACS Appl Mater Interfaces 2023 Sep; 15(37): 43403-43413

The mechanical properties of living cells reflect their physiological and pathological state. In particular, cancer cells undergo cytoskeletal modifications that typically make them softer than healthy cells, a property that could be used as a diagnostic tool. However, this is challenging because cells are complex structures displaying a broad range of morphologies when cultured in standard 2D culture dishes. Here, we use adhesive micropatterns to impose the cell geometry and thus standardize the mechanics and morphologies of cancer cells, which we measure by atomic force microscopy (AFM), mechanical nanomapping, and membrane nanotube pulling. We show that micropatterning cancer cells leads to distinct morphological and mechanical changes for different cell lines. Micropatterns did not systematically lower the variability in cell elastic modulus distribution. These effects emerge from a variable cell spreading rate associated with differences in the organization of the cytoskeleton, thus providing detailed insights into the structure-mechanics relationship of cancer cells cultured on micropatterns. Combining AFM with micropatterns reveals new mechanical and morphological observables applicable to cancer cells and possibly other cell types.